References

[1]

F Hindenlang, T Bolemann, and C-D. Munz. Mesh Curving Techniques for High Order Discontinuous Galerkin Simulations. In IDIHOM: Industrialization of High-Order Methods-A Top-Down Approach, pages 133–152. Springer, 2015.

[2]

Matthias Sonntag. Shape derivatives and shock capturing for the Navier-Stokes equations in discontinuous Galerkin methods. PhD thesis, University of Stuttgart, 2017.

[3]

David A Kopriva, Stephen L Woodruff, and M Yousuff Hussaini. Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. International journal for numerical methods in engineering, 53(1):105–122, 2001.

[4]

Tan Bui-Thanh and Omar Ghattas. Analysis of an hp-nonconforming discontinuous Galerkin spectral element method for wave propagation. SIAM Journal on Numerical Analysis, 50(3):1801–1826, 2012.

[5]

S.M. Copplestone, P. Ortwein, and C.-D. Munz. Complex-Frequency Shifted PMLs for Maxwell's Equations with Hyperbolic Divergence Cleaning and Their Application in Particle-in-Cell Codes. IEEE Transactions on Plasma Science, 2017. doi:10.1109/TPS.2016.2637061.

[6]

M H Carpenter and C A Kennedy. Fourth-order 2N-storage Runge-Kutta Schemes. NASA Technical Memorandum, 109112:1–26, 1994.

[7]

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao Zhang. PETSc Web page. https://petsc.org/, 2022. URL: https://petsc.org/.

[8]

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschelman, Emil Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, Jacob Faibussowitsch, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang, and Junchao Zhang. PETSc/TAO users manual. Technical Report ANL-21/39 - Revision 3.18, Argonne National Laboratory, 2022.

[9]

Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient management of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, 163–202. Birkhäuser Press, 1997.

[10]

S. M. Copplestone. Particle-Based Numerical Methods for the Simulation of Electromagnetic Plasma Interactions. PhD thesis, University of Stuttgart, 2019.

[11]

Jose F. Padilla and Iain D. Boyd. Assessment of Gas-Surface Interaction Models for Computation of Rarefied Hypersonic Flow. Journal of Thermophysics and Heat Transfer, 23(June):96–105, 2009. doi:10.2514/1.36375.

[12]

Min Lei, Xiaobin Wu, Wei Zhang, Xiaoping Li, and Xuedong Chen. The implementation of subsonic boundary conditions for the direct simulation Monte Carlo method in dsmcFoam. Computers and Fluids, 156:209–219, 2017. URL: http://dx.doi.org/10.1016/j.compfluid.2017.07.010, doi:10.1016/j.compfluid.2017.07.010.

[13]

Dmitry Levko and Laxminarayan L Raja. Breakdown of atmospheric pressure microgaps at high excitation frequencies. Journal of Applied Physics, 117(17):173303, 2015.

[14]

Andreas Pflug, Michael Siemers, Thomas Melzig, Lothar Schaefer, and Günter Bräuer. Simulation of linear magnetron discharges in 2d and 3d. Surface and Coatings Technology, 260:411–416, 2014.

[15]

Diederik Depla, Stijn Mahieu, and Roger De Gryse. Magnetron sputter deposition: linking discharge voltage with target properties. Thin Solid Films, 517(9):2825–2839, 2009.

[16]

Hui Liu, Boying Wu, Daren Yu, Yong Cao, and Ping Duan. Particle-in-cell simulation of a hall thruster. Journal of Physics D: Applied Physics, 43(16):165202, 2010.

[17]

AI Morozov and VV Savel’ev. Sructure of steady-state debye layers in a low-density plasma near a dielectric surface. Plasma Physics Reports, 30(4):299–306, 2004.

[18]

J Theis, G Werner, T Jenkins, and J Cary. Computing the paschen curve for argon with speed-limited particle-in-cell simulation. Phys. Plasmas, 2021.

[19]

A. V. Phelps and Z. Lj Petrovic. Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons. Plasma Sources Science Technology, 8(3):R21–R44, August 1999. doi:10.1088/0963-0252/8/3/201.

[20]

Ming Zeng, Hui Liu, Lei Qiao, Fufeng Wang, Hongyan Huang, and Daren Yu. Experimental investigation of dielectric wall material effects on low-power hemp thruster. AIP Advances, 10(8):085317, 2020.

[21]

A Dunaevsky, Y Raitses, and NJ Fisch. Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes. Physics of Plasmas, 10(6):2574–2577, 2003.

[22]

Sylvain Coulombe and Jean-Luc Meunier. Thermo-field emission: a comparative study. Journal of Physics D: Applied Physics, 30:776–780, 3 1997. URL: https://iopscience.iop.org/article/10.1088/0022-3727/30/5/009, doi:10.1088/0022-3727/30/5/009.

[23]

Ernest Y. Wu and Baozhen Li. The schottky emission effect: a critical examination of a century-old model. Journal of Applied Physics, 132:025105, 7 2022. URL: https://aip.scitation.org/doi/10.1063/5.0087909, doi:10.1063/5.0087909.

[24]

Erin Farbar and Iain D. Boyd. Subsonic flow boundary conditions for the direct simulation Monte Carlo method. Computers and Fluids, 102:99–110, 2014. URL: http://dx.doi.org/10.1016/j.compfluid.2014.06.025, doi:10.1016/j.compfluid.2014.06.025.

[25]

Martin W. Tysanner and Alejandro L. Garcia. Measurement bias of fluid velocity in molecular simulations. Journal of Computational Physics, 196(1):173–183, 2004. doi:10.1016/j.jcp.2003.10.021.

[26]

Alejandro L. Garcia and Wolfgang Wagner. Generation of the Maxwellian inflow distribution. Journal of Computational Physics, 217(2):693–708, 2006. doi:10.1016/j.jcp.2006.01.025.

[27]

G B Jacobs and J S Hesthaven. High-order Nodal Discontinuous \G\alerkin Particle-in-cell Method on Unstructured Grids. J. Comput. Phys., 214(1):96–121, may 2006. URL: http://dx.doi.org/10.1016/j.jcp.2005.09.008, doi:10.1016/j.jcp.2005.09.008.

[28]

A Stock, J Neudorfer, M Riedlinger, G Pirrung, G Gassner, R Schneider, S Roller, and C.-D. Munz. Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-\G\alerkin-Based Parallel Particle-In-Cell Method. Plasma Science, IEEE Transactions on, 40(7):1860–1870, 2012.

[29]

Konstantin Hinsberger. Development and Implementation of the Calculation of Magnetic Fields Within PICLas. Bachelor Thesis, University of Stuttgart, 2017.

[30]

Branko Ruscic, Reinhardt E. Pinzon, Melita L. Morton, Gregor Von Laszevski, Sandra J. Bittner, Sandeep G. Nijsure, Kaizar A. Amin, Michael Minkoff, and Albert F. Wagner. Introduction to active thermochemical tables: Several "Key" enthalpies of formation revisited. Journal of Physical Chemistry A, 108(45):9979–9997, 2004. doi:10.1021/jp047912y.

[31]

Branko Ruscic, Reinhardt E. Pinzon, Gregor Von Laszewski, Deepti Kodeboyina, Alexander Burcat, David Leahy, David Montoy, and Albert F. Wagner. Active Thermochemical Tables: thermochemistry for the 21st century. Journal of Physics: Conference Series, 16:561–570, 2005. doi:10.1088/1742-6596/16/1/078.

[32]

Marcel Pfeiffer, Asim Mirza, and Stefanos Fasoulas. A grid-independent particle pairing strategy for DSMC. Journal of Computational Physics, 246:28–36, 2013. URL: http://linkinghub.elsevier.com/retrieve/pii/S0021999113001964, doi:10.1016/j.jcp.2013.03.018.

[33]

A. A. Shevyrin, Ye A. Bondar, and M. S. Ivanov. Analysis of repeated collisions in the DSMC method. AIP Conference Proceedings, 762:565–570, 2005. doi:10.1063/1.1941596.

[34]

Hassan Akhlaghi, Ehsan Roohi, and Stefan Stefanov. On the consequences of successively repeated collisions in no-time-counter collision scheme in DSMC. Computers and Fluids, 161:23–32, 2018. URL: https://doi.org/10.1016/j.compfluid.2017.11.005, doi:10.1016/j.compfluid.2017.11.005.

[35]

Krishnan Swaminathan-Gopalan and Kelly A. Stephani. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes. Physics of Fluids, 28(2):027101, feb 2016. URL: http://dx.doi.org/10.1063/1.4939719 http://scitation.aip.org/content/aip/journal/pof2/28/2/10.1063/1.4939719, doi:10.1063/1.4939719.

[36]

Brian L. Haas, David B. Hash, Graeme A. Bird, Forrest E. III Lumpkin, and H. A. Hassan. Rates of thermal relaxation in direct simulation Monte Carlo methods. Physics of Fluids, 6(6):2191, 1994. URL: http://scitation.aip.org/content/aip/journal/pof2/6/6/10.1063/1.868221, doi:10.1063/1.868221.

[37]

Forrest E. Lumpkin, Brian L. Haas, and Iain D. Boyd. Resolution of differences between collision number definitions in particle and continuum simulations. Physics of Fluids A: Fluid Dynamics, 3(9):2282–2284, 1991. URL: https://doi.org/10.1063/1.857964, arXiv:https://doi.org/10.1063/1.857964, doi:10.1063/1.857964.

[38]

Iain D. Boyd. Analysis of rotational nonequilibrium in standing shock waves of nitrogen. AIAA Journal, 28(11):1997–1999, 1990. URL: https://doi.org/10.2514/3.10511, arXiv:https://doi.org/10.2514/3.10511, doi:10.2514/3.10511.

[39]

I. D. Boyd. Rotational and vibrational nonequilibrium effects in rarefied hypersonic flow. Journal of Thermophysics and Heat Transfer, 4:478–484, October 1990.

[40]

Paolo Valentini, Chonglin Zhang, and Thomas E. Schwartzentruber. Molecular dynamics simulation of rotational relaxation in nitrogen: implications for rotational collision number models. Physics of Fluids, 24(10):106101, 2012. URL: https://doi.org/10.1063/1.4757119, arXiv:https://doi.org/10.1063/1.4757119, doi:10.1063/1.4757119.

[41]

Roger C. Millikan and Donald R. White. Systematics of vibrational relaxation. The Journal of Chemical Physics, 39(12):3209–3213, 1963. URL: https://doi.org/10.1063/1.1734182, arXiv:https://doi.org/10.1063/1.1734182, doi:10.1063/1.1734182.

[42]

Takashi Abe. Inelastic collision model for vibrational–translational and vibrational–vibrational energy transfer in the direct simulation monte carlo method. Physics of Fluids, 6(9):3175–3179, 1994. URL: https://doi.org/10.1063/1.868094, arXiv:https://doi.org/10.1063/1.868094, doi:10.1063/1.868094.

[43]

Erin D. Farbar. Kinetic Simulation of Rarefied and Weakly Ionized Hypersonic Flow Fields. PhD thesis, University of Michigan, Horace H. Rackham School of Graduate Studies, 2010. URL: http://hdl.handle.net/2027.42/78779.

[44]

Iain D. Boyd. Analysis of vibration-dissociation-recombination processes behind strong shock waves of nitrogen. Physics of Fluids A: Fluid Dynamics, 4(1):178–185, 1992. URL: https://doi.org/10.1063/1.858495, arXiv:https://doi.org/10.1063/1.858495, doi:10.1063/1.858495.

[45]

Derek S. Liechty and Mark Lewis. Electronic Energy Level Transition and Ionization Following the Quantum-Kinetic Chemistry Model. Journal of Spacecraft and Rockets, 48(2):283–290, mar 2011. URL: http://arc.aiaa.org/doi/abs/10.2514/1.48826, doi:10.2514/1.48826.

[46]

Marcel Pfeiffer. Extending the particle ellipsoidal statistical Bhatnagar-Gross-Krook method to diatomic molecules including quantized vibrational energies. Physics of Fluids, 30(11):116103, 2018. URL: http://aip.scitation.org/doi/10.1063/1.5054961, doi:10.1063/1.5054961.

[47]

Jonathan M. Burt and Eswar Josyula. DSMC modeling of nonequilibrium electronic excitation and emission for hypersonic sensor applications. 45th AIAA Thermophysics Conference, pages 1–16, 2015. doi:10.2514/6.2015-2511.

[48]

A. Kramida, Yu. Ralchenko, and J. Reader. NIST Atomic Spectra Database (version 5.4). 2016. URL: http://physics.nist.gov/asd.

[49]

K. P. Huber and G. Herzberg. IV. Constants of Diatomic Molecules. In Molecular Spectra and Molecular Structure. Van Nostrand Reinhold Company, Boston, Massachusetts, 1979. URL: http://link.springer.com/10.1007/978-1-4757-0961-2, doi:10.1007/978-1-4757-0961-2.

[50]

G. Herzberg. III. Electronic spectra and electronic structure of polyatomic molecules. In Molecular Spectra and Molecular Structure. D. Van Nostrand Company, Princeton, New Jersey, 1966.

[51]

Graeme A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford Engineering Science, 2nd edition, 1994. ISBN 978-0198561958.

[52]

Graeme A. Bird. The Q-K model for gas-phase chemical reaction rates. Physics of Fluids, 2011. URL: http://scitation.aip.org/content/aip/journal/pof2/23/10/10.1063/1.3650424, doi:10.1063/1.3650424.

[53]

Antonio Fernández-Ramos, Benjamin A. Ellingson, Rubén Meana-Pañeda, Jorge M. C. Marques, and Donald G. Truhlar. Symmetry numbers and chemical reaction rates. Theoretical Chemistry Accounts, 118(4):813–826, jul 2007. URL: http://link.springer.com/10.1007/s00214-007-0328-0, doi:10.1007/s00214-007-0328-0.

[54]

C.K. Birdsall. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Transactions on Plasma Science, 19(2):65–85, apr 1991. URL: http://ieeexplore.ieee.org/document/106800/, doi:10.1109/27.106800.

[55]

V. Vahedi and M. Surendra. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Computer Physics Communications, 87(1-2):179–198, 1995. doi:10.1016/0010-4655(94)00171-W.

[56]

Leanne C. Pitchford, Luis L. Alves, Klaus Bartschat, Stephen F. Biagi, Marie Claude Bordage, Igor Bray, Chris E. Brion, Michael J. Brunger, Laurence Campbell, Alise Chachereau, Bhaskar Chaudhury, Loucas G. Christophorou, Emile Carbone, Nikolay A. Dyatko, Christian M. Franck, Dmitry V. Fursa, Reetesh K. Gangwar, Vasco Guerra, Pascal Haefliger, Gerjan J.M. Hagelaar, Andreas Hoesl, Yukikazu Itikawa, Igor V. Kochetov, Robert P. McEachran, W. Lowell Morgan, Anatoly P. Napartovich, Vincent Puech, Mohamed Rabie, Lalita Sharma, Rajesh Srivastava, Allan D. Stauffer, Jonathan Tennyson, Jaime de Urquijo, Jan van Dijk, Larry A. Viehland, Mark C. Zammit, Oleg Zatsarinny, and Sergey Pancheshnyi. LXCat: an Open-Access, Web-Based Platform for Data Needed for Modeling Low Temperature Plasmas. Plasma Processes and Polymers, 14(1-2):1–17, 2017. doi:10.1002/ppap.201600098.

[57]

M. Hossein Gorji and Patrick Jenny. An efficient particle Fokker–Planck algorithm for rarefied gas flows. Journal of Computational Physics, 262:325–343, 2014. URL: http://linkinghub.elsevier.com/retrieve/pii/S0021999113008541, doi:10.1016/j.jcp.2013.12.046.

[58]

Marcel Pfeiffer and M. Hossein Gorji. Adaptive particle–cell algorithm for Fokker–Planck based rarefied gas flow simulations. Computer Physics Communications, 213:1–8, 2017. URL: http://linkinghub.elsevier.com/retrieve/pii/S0010465516303575, doi:10.1016/j.cpc.2016.11.003.

[59]

Eunji Jun, Marcel Pfeiffer, Luc Mieussens, and M. Hossein Gorji. Comparative Study Between Cubic and Ellipsoidal Fokker–Planck Kinetic Models. AIAA Journal, pages 1–10, mar 2019. URL: https://arc.aiaa.org/doi/10.2514/1.J057935, doi:10.2514/1.J057935.

[60]

M. Pfeiffer, A Mirza, and P Nizenkov. Evaluation of particle-based continuum methods for a coupling with the direct simulation Monte Carlo method based on a nozzle expansion. Physics of Fluids, 31(7):073601, 2019. URL: http://dx.doi.org/10.1063/1.5098085 http://aip.scitation.org/doi/10.1063/1.5098085, doi:10.1063/1.5098085.

[61]

Marcel Pfeiffer. Particle-based fluid dynamics: Comparison of different Bhatnagar-Gross-Krook models and the direct simulation Monte Carlo method for hypersonic flows. Physics of Fluids, 30(10):106106, 2018. URL: http://aip.scitation.org/doi/10.1063/1.5042016, doi:10.1063/1.5042016.

[62]

Marcel Pfeiffer and Paul Nizenkov. Coupled ellipsoidal statistical BGK-DSMC simulations of a nozzle expansion. AIP Conference Proceedings, 2132:070019, 2019. URL: http://aip.scitation.org/doi/abs/10.1063/1.5119573, doi:10.1063/1.5119573.

[63]

Marcel Pfeiffer, Paul Nizenkov, and Stefanos Fasoulas. Extension of particle-based BGK models to polyatomic species in hypersonic flow around a flat-faced cylinder. AIP Conference Proceedings, 2132:100001, 2019. URL: http://aip.scitation.org/doi/abs/10.1063/1.5119596, doi:10.1063/1.5119596.

[64]

Marcel Pfeiffer, Asim Mirza, and Paul Nizenkov. Multi-species modeling in the particle-based ellipsoidal statistical Bhatnagar–Gross–Krook method for monatomic gas species. Physics of Fluids, 33:036106, 2021. doi:10.1063/5.0037915.

[65]

Cyril Galitzine and Iain D. Boyd. An adaptive procedure for the numerical parameters of a particle simulation. Journal of Computational Physics, 281:449–472, 2015. URL: http://dx.doi.org/10.1016/j.jcp.2014.10.044, doi:10.1016/j.jcp.2014.10.044.

[66]

Julian Beyer, Marcel Pfeiffer, and Stefanos Fasoulas. Non-equilibrium radiation modeling in a gas kinetic simulation code. Journal of Quantitative Spectroscopy and Radiative Transfer, 280:108083, 2022. URL: https://www.sciencedirect.com/science/article/pii/S0022407322000206, doi:https://doi.org/10.1016/j.jqsrt.2022.108083.

[67]

Julian Beyer, Paul Nizenkov, Stefanos Fasoulas, and Marcel Pfeiffer. Simulation of radiating non-equilibrium flows around a capsule entering titan’s atmosphere. In 32nd International Symposium on Rarefied Gas Dynamics. 2022.

[68]

Marcel Pfeiffer, Julian Beyer, Jérémie Vaubaillon, Pavol Matlovič, Juraj Tóth, Stefanos Fasoulas, and Stefan Löhle. Numerical simulation of an iron meteoroid entering into earth’s atmosphere using dsmc and a radiation solver with comparison to ground testing data. Icarus, 407:115768, 2024. URL: https://www.sciencedirect.com/science/article/pii/S0019103523003457, doi:https://doi.org/10.1016/j.icarus.2023.115768.

[69]

Peter J Schmid, Knud Erik Meyer, and Oliver Pust. Dynamic mode decomposition and proper orthogonal decomposition of flow in a lid-driven cylindrical cavity. In 8th International Symposium on Particle Image Velocimetry, 25–28. 2009.

[70]

R. W. Hockney and J. W. Eastwood. Computer Simulation Using Particles. CRC Press, 1988.

[71]

Gustaaf Jacobs, Jan Hesthaven, and Giovanni Lapenta. Simulations of the weibel instability with a high-order discontinous galerkin particle-in-cell solver. In 44th AIAA Aerospace Sciences Meeting and Exhibit, 1171. 2006.

[72]

J. Allegre, D. Bisch, and J. C. Lengrand. Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone. Journal of Spacecraft and Rockets, 34(6):724–728, 1997. doi:10.2514/2.3302.

[73]

James Moss, Virendra Dogra, Joseph Price, and David Hash. Comparison of dsmc and experimental results for hypersonic external flows. 30th Thermophysics Conference, 1995. doi:10.2514/6.1995-2028.

[74]

Paul Nizenkov, Peter Noeding, Martin Konopka, and Stefanos Fasoulas. Verification and validation of a parallel 3D direct simulation Monte Carlo solver for atmospheric entry applications. CEAS Space Journal, 9(1):127–137, 2017. doi:10.1007/s12567-016-0133-5.

[75]

Julien Mathiaud, Luc Mieussens, and Marcel Pfeiffer. An es-bgk model for diatomic gases with correct relaxation rates for internal energies. arXiv preprint arXiv:2202.10906, 2022.

[76]

Jens Niegemann, Richard Diehl, and Kurt Busch. Efficient low-storage Runge–Kutta schemes with optimized stability regions. Journal of Computational Physics, 231(2):364–372, 2012.

[77]

Wladimir Reschke, Bartomeu Massuti-Ballester, Marcel Pfeiffer, Georg Herdrich, and Stefanos Fasoulas. Validation of DSMC and CFD based catalysis modelling using plasma wind tunnel flows. AIP Conference Proceedings, 2132:070020, 2019. URL: http://aip.scitation.org/doi/abs/10.1063/1.5119574, doi:10.1063/1.5119574.